Lesson 011 Probability Distributions for Discrete Random Variables

Wednesday, October 4

There is no probabilistic difference between modelling a coin flip and a plane crash.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.
- A probability distribution demonstrates how the total probability is allocated to each outcome.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.
- A probability distribution demonstrates how the total probability is allocated to each outcome.
- Can think of these being represented, visually, as a histogram.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.
- A probability distribution demonstrates how the total probability is allocated to each outcome.
- Can think of these being represented, visually, as a histogram.
- Normally, we discuss the distribution of a random variable.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.
- A probability distribution demonstrates how the total probability is allocated to each outcome.
- Can think of these being represented, visually, as a histogram.
- Normally, we discuss the distribution of a random variable.
- Discrete random variables have discrete probability distributions.

Probability Distributions

- We know that the probability over the whole sample space is one, $P(\mathcal{S})=1$.
- A probability distribution demonstrates how the total probability is allocated to each outcome.
- Can think of these being represented, visually, as a histogram.
- Normally, we discuss the distribution of a random variable.
- Discrete random variables have discrete probability distributions.
- Discrete probability distributions are characterized by probability mass functions.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.
- For the PMF to be valid we require $0 \leq p\left(x_{i}\right) \leq 1$ and $\sum_{i} p\left(x_{i}\right)=1$.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.
- For the PMF to be valid we require $0 \leq p\left(x_{i}\right) \leq 1$ and $\sum_{i} p\left(x_{i}\right)=1$.
- In the long term, we would expect that in $p\left(x_{i}\right)$ proportion of experiments, we observe the event corresponding to $X=x_{i}$.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.
- For the PMF to be valid we require $0 \leq p\left(x_{i}\right) \leq 1$ and $\sum_{i} p\left(x_{i}\right)=1$.
- In the long term, we would expect that in $p\left(x_{i}\right)$ proportion of experiments, we observe the event corresponding to $X=x_{i}$.
- Often, distributions are indexed by parameters controlling the values the function takes on.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.
- For the PMF to be valid we require $0 \leq p\left(x_{i}\right) \leq 1$ and $\sum_{i} p\left(x_{i}\right)=1$.
- In the long term, we would expect that in $p\left(x_{i}\right)$ proportion of experiments, we observe the event corresponding to $X=x_{i}$.
- Often, distributions are indexed by parameters controlling the values the function takes on.
- Any distributions which differ only in the value of the parameter are from the same family.

Probability Mass Functions

- A PMF is a mathematical function that assigns a numeric value to each outcome that a random variable X can take.
- Suppose X can take on values x_{1}, x_{2}, \ldots, then the PMF is a function where $p\left(x_{i}\right)$ takes a value.
- For the PMF to be valid we require $0 \leq p\left(x_{i}\right) \leq 1$ and $\sum_{i} p\left(x_{i}\right)=1$.
- In the long term, we would expect that in $p\left(x_{i}\right)$ proportion of experiments, we observe the event corresponding to $X=x_{i}$.
- Often, distributions are indexed by parameters controlling the values the function takes on.
- Any distributions which differ only in the value of the parameter are from the same family.
- We will often write $X \sim p(x)$.

Example

$$
p(x)= \begin{cases}0.5 & x=0 \\ 0.25 & x=1 \\ 0.1 & x=2 \\ 0.15 & x=3 \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
\begin{array}{rl}
p(x)=p^{x}(1-p)^{1-x} & x \in\{0,1\} \\
& p \in(0,1) \\
0 & \text { otherwise }
\end{array}
$$

Consider the following PMF: $p(x)=\left\{\begin{array}{ll}0.5 & x=0 \\ z & x=1 \\ 0.125 & x \in\{2,3\} \\ 0 & \text { otherwise }\end{array}\right.$. What is the value of z ?
\square
$z=0.5$
†
$z=0.375$
10%
$z=0.25$
1
$z=0$

Consider the following PMF: $p(x)=\left\{\begin{array}{ll}0.5 & x=0 \\ 0.25 & x=1 \\ 0.125 & x \in\{2,3\} \\ 0 & \text { otherwise }\end{array}\right.$. What is $P(X=\{0\} \cup\{2\})$?

$$
z=0.625
$$

\square

$$
z=0.5
$$

$$
0
$$

$$
z=0.25
$$

Bernoulli Distribution

- A random variable which can take on only values 0 or 1 always follows a Bernoulli distribution.

Bernoulli Distribution

- A random variable which can take on only values 0 or 1 always follows a Bernoulli distribution.
- The PMF of a Bernoulli random variable is given by $p(x)=p^{x}(1-p)^{1-x}$, for some parameter p.

Bernoulli Distribution

- A random variable which can take on only values 0 or 1 always follows a Bernoulli distribution.
- The PMF of a Bernoulli random variable is given by $p(x)=p^{x}(1-p)^{1-x}$, for some parameter p.
- We typically refer to a 1 as a success and a 0 as a failure.
- A biased coin is flipped, which turns up heads 70% of the time.

$$
\begin{aligned}
X & \sim \operatorname{Bern}(0.7) \\
p(x) & =(0.7)^{x}(0.3)^{1-x} \quad x \in\{0,1\}
\end{aligned}
$$

- A commercial plane takes flight. Of all commercial flights, 0.000414% end up crashing.
$X \sim \operatorname{Bern}(0.99999586)$
$p(x)=(0.99999586)^{x}(0.00000414)^{1-x} \quad x \in\{0,1\}$

Which of the following random variables is represented by a Bernoulli distribution?

Counting the number of hearts (successes) on 5 draws from a deck of cards, with replacement.
\square
Counting the number of hearts (successes) on 5 draws from a deck of cards, without replacement.
\square

An indicator variable as to whether 5 hearts are observed in 5 draws from a deck of cards, without replacement.

All of the above
0\%

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

$$
P(X \leq x)=F_{X}(x)=\sum_{k=-\infty}^{x} p(k) .
$$

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

$$
P(X \leq x)=F_{X}(x)=\sum_{k=-\infty}^{x} p(k) .
$$

- For discrete random variables, the CDF will always be a step function.

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

$$
P(X \leq x)=F_{X}(x)=\sum_{k=-\infty}^{X} p(k) .
$$

- For discrete random variables, the CDF will always be a step function.
- We can interchange between a PMF and a CDF .

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

$$
P(X \leq x)=F_{X}(x)=\sum_{k=-\infty}^{x} p(k) .
$$

- For discrete random variables, the CDF will always be a step function.
- We can interchange between a PMF and a CDF.
- To find the probability of falling in an interval,

$$
P(a<X \leq b)=F(b)-F(a)
$$

Cumulative Distribution Functions

- The cumulative distribution function is a related quantity which gives the probability that the random variable takes on a value less than some threshold.

$$
P(X \leq x)=F_{X}(x)=\sum_{k=-\infty}^{x} p(k) .
$$

- For discrete random variables, the CDF will always be a step function.
- We can interchange between a PMF and a CDF.
- To find the probability of falling in an interval,

$$
P(a<X \leq b)=F(b)-F(a)
$$

- It will often be easier to work with a CDF rather than a PMF.

Suppose that $P(Y=8)=0.40$. Moreover, assume that the CDF of Y is given by

$$
\left\{\begin{array}{ll}
0 & y<1 \\
0.05 & 1 \leq y<2 \\
0.15 & 2 \leq y<4 \\
0.5 & 4 \leq y<8 \\
z & 8 \leq y<16 \\
1 & 16 \leq y
\end{array} . \text { What is the value of } z ?\right.
$$

$z=0.5$
$\boldsymbol{z}=0.75$

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.
- We call this distribution the geometric distribution, and it is also governed by a parameter p.

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.
- We call this distribution the geometric distribution, and it is also governed by a parameter p.
- The PMF of the distribution is given by $p(x)=(1-p)^{x-1} p$.

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.
- We call this distribution the geometric distribution, and it is also governed by a parameter p.
- The PMF of the distribution is given by $p(x)=(1-p)^{x-1} p$.
- X represents the number of trials until the first success is observed.

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.
- We call this distribution the geometric distribution, and it is also governed by a parameter p.
- The PMF of the distribution is given by $p(x)=(1-p)^{x-1} p$.
- X represents the number of trials until the first success is observed.
- Sometimes you will count non-inclusively, giving $p(x)=(1-p)^{x} p$.

The Geometric Distribution

- What would the distribution be if you wanted to count how many flips of a coin it took until you got a heads?
- This is related to the Bernoulli distribution, but is not exactly the same.
- We call this distribution the geometric distribution, and it is also governed by a parameter p.
- The PMF of the distribution is given by $p(x)=(1-p)^{x-1} p$.
- X represents the number of trials until the first success is observed.
- Sometimes you will count non-inclusively, giving $p(x)=(1-p)^{x} p$.
- If we right $\lfloor x\rfloor$ as the lowest integer less than or equal to x, then $F_{X}(x)=1-(1-p)^{[x]}$.

Which of the following random variables is represented by a Geometric distribution?

Counting the number of draws until a heart is seen in a deck of cards, without replacing them each draw.

I
Counting the number of draws until a heart is seen in a deck of cards, replacing them each draw.
\square
Counting the number of hearts (successes) in a set number of draws with replacement.卫 0%

Two or more of the above.
\square

